Synthesis and hydrogen adsorption properties of internally polarized 2,6-azulenedicarboxylate based metal–organic frameworks†

Samir Barman, Anupam Khutia, Ralph Koitz, Olivier Blaque, Hiroyasu Furukawa, Marcella Iannuzzi, Omar M. Yaghi, Christoph Janiak, Jürg Hutter and Heinz Berke*

To improve the binding energy of hydrogen, incorporation of internally polarized organic units into metal–organic frameworks (MOFs) should be a promising strategy. In this study, two novel MOFs composed of internally polarized 2,6-azulenedicarboxylate (2,6-azd), termed MOF-649 [Zn$_2$(2,6-azd)$_2$(dabco)], where dabco = 1,4-diazabicyclo[2.2.2]octane and MOF-650 [Zn$_4$O(2,6-azd)$_3$], have been synthesized, and their crystal structures were determined by single-crystal X-ray diffraction analyses. Both materials displayed permanent microporosity, and the Brunauer–Emmett–Teller (BET) surface areas of MOF-649 and MOF-650 are estimated to be 910 and 2630 m2 g$^{-1}$, respectively. The H$_2$ adsorption measurements showed that MOF-650 adsorbs 14.8 mg g$^{-1}$ of hydrogen at 77 K and 1 bar. The polarization effect of the azulene unit in the framework is supported by high initial isosteric heat of adsorption of 6.8 kJ mol$^{-1}$ for MOF-650. A detailed computational analysis using density functional theory was carried out in order to investigate the structure and electronic properties of MOF-650 and subsequently to understand its site-specific interactions with hydrogen.

1. Introduction

Metal–organic frameworks (MOFs) are receiving immense attention owing to their unique structural features, the relative ease with which their functionalities may be modified, and their potential applications in gas storage, separation and catalysis. In particular, the discovery of extraordinarily high cryogenic (77 K) total H$_2$ uptake (>10 wt%) by MOFs highlights their potential as ideal storage media for clean energy. However, due to their insufficient interactions with H$_2$, the storage capacity at room temperature is low, which hinders realization of practical usage. To improve MOF interaction energies with H$_2$, utilization of open metal sites and impregnation with alkali metals were proposed. Furthermore, it is believed that MOFs with high local charge densities would be accompanied by improved hydrogen adsorption enthalpy. In this context we anticipated that incorporation of internally polarized units into the MOF backbone would lead to enhancement of the polarization potential via the Coulombic field of such functionalities, which is expected to improve the binding of H$_2$ locally and/or globally.

We envisage that the incorporation of azulene units, as linkers in MOFs, will lead to a strongly polarizing environment as a direct result of azulene’s polar character (contrary to isomeric naphthalene units). To this end, we first prepared the organic linker, 2,6-azulenedicarboxylic acid (2,6-H$_2$azd) (Fig. 1a and Scheme S1, ESI†), and subsequently sought to synthesize MOFs possessing secondary building units (SBUs) based on either Zn$_2$(CO$_2$)$_4$ paddle-wheels or Zn$_4$O(CO$_2$)$_6$ octahedra. This is primarily based on the expectation that the resulting reticulated frameworks will be accompanied by uniformly polarized pore walls, potentially high porosities, and high apparent internal surface areas. Here, by applying this strategy, we synthesized two novel frameworks having polarized 2,6-azd units [termed MOF-649: Zn$_2$(2,6-azd)$_2$(dabco) and MOF-650: Zn$_4$O(2,6-azd)$_3$, dabco = 1,4-diazabicyclo[2.2.2]octane]. More specifically, we report the details of the synthetic procedure and structural characterization for MOF-649 and MOF-650.
accompanied by a discussion on both the porosity and H₂ adsorption properties of these MOFs.

Furthermore, we conduct a computational investigation using density functional theory (DFT) to clarify whether the polarization potential of 2,6-azd or the linker-generated hydrogen binding pockets is a greater factor in the adsorption of H₂. In particular, we create models for MOF-650 that incorporate several possible primary hydrogen binding sites resulting from the most random arrangements of the asymmetrical 2,6-azd linker around the SBUs. We calculate the corresponding H₂ binding energies for MOF-650 and compare them with those for the isosctructural IRMOF-8 [Zn₉O(2,6-napthalenedicarboxylate)₃] containing nonpolar naphthalene linkers.⁸¹¹,¹²

2. Experimental section

2.1 Materials

All commercially available reagents and solvents, such as N,N-dimethylformamide (DMF), 1-methyl-2-pyrrolidone (NMP), Zn(NO₃)₂·6H₂O, anhydrous acetone, and amylene-stabilized chloroform (CHCl₃), were purchased from Aldrich and were used without further purification. Prior to use, diethyl ether (Et₂O) and tetrahydrofuran (THF) were dried via distillation under a N₂ atmosphere using the sodium benzophenone ketyl radical. 2,6-H₂azd was prepared according to a published procedure (see Scheme S1, ESI†).¹³,¹⁴

2.2 Analytical techniques

Single-crystal X-ray diffraction (SXRD) data for MOF-649 and MOF-650 were collected on an Xcalibur diffractometer (Agilent Technologies, Ruby CCD detector) using a single wavelength Enhance X-ray source with Mo-Kα radiation, λ = 0.71073 Å.¹⁶ The powder X-ray diffraction (PXRD) patterns were obtained with a Bruker D8 Advance system equipped with a Cu sealed tube (λ = 1.5406 Å). The following conditions were applied: 40 kV, 40 mA, increment = 0.007°, and scan speed = 1.5 s per step. Thermogravimetric analysis (TGA) data were obtained on a NETZSCH STA 449C instrument at a heating rate of 1 °C min⁻¹ under a N₂ atmosphere. Infrared (IR) spectra were recorded on a Perkin-Elmer 1600 Fourier transform spectrometer using KBr pellets with frequencies (v_max) quoted in wavenumbers (cm⁻¹). Elemental microanalyses were carried out with a LECO CHNS-932 analyser.¹² H and ¹³C NMR spectra were recorded on a Varian Mercury (200 MHz) spectrometer. The guest free sample of MOF-649 was obtained on a Tousimis Samdri PVT-3D critical point dryer.

2.3 Synthesis of [Zn₉O(2,6-azd)₃(dabco)][DMF]₅(H₂O)₁₃ (MOF-650)

2,6-H₂azd (0.027 g, 1.3 × 10⁻⁴ mol) and Zn(NO₃)₂·6H₂O (0.075 g, 2.5 × 10⁻⁴ mol) were dissolved in 1.8 mL of DMF. Dabco (0.014 g, 1.3 × 10⁻⁴ mol) was then added to the solution, which immediately produced a large amount of dark blue precipitate. The mixture was filtered using a 60 mL PYREX glass funnel with fine porosity. The filtrate was collected, and the solution was sealed in a 20 mL glass vial. The vial was heated to 85 °C (1 °C min⁻¹) for 60 h in a programmable oven and then cooled down to room temperature. The resulting dark blue-green needle-shaped crystals were collected by filtration and washed with DMF (3 × 2 mL). Elemental microanalysis for MOF-649, [Zn₉O(2,6-azd)₃(dabco)][DMF]₅(H₂O)₁₃=C₄₅H₆₃O₁₅N₇Zn₂, calculated (%): C 50.38, H 5.92, N 9.14; found C 50.19, H 6.12, N 8.99.

FT-IR (KBr, 4000–400 cm⁻¹): 3468 (m, br), 2930 (m, br), 1658 (vs), 1590 (m), 1501 (w), 1350 (vs), 1297 (w), 1251 (w), 1205 (m), 1087 (s), 1048 (m), 1015 (w), 923 (w), 877 (w), 811 (m), 786 (s), 654 (m), 609 (w), 576 (m). To obtain guest free materials, the DMF washed crystals were further washed with CHCl₃ (3 × 2 mL) and were subsequently soaked in 10 mL of CHCl₃ for 3 days with fresh CHCl₃ being added every 24 h. The final CHCl₃ exchanged material was then thoroughly washed with anhydrous acetone prior to the activation on a supercritical CO₂ drier.¹⁶

2.4 Synthesis of [Zn₉O(2,6-azd)₃][DMF]₄(NMP)₄(H₂O)₁₃ (MOF-650)

2,6-H₂azd (0.068 g, 3.1 × 10⁻⁴ mol) and Zn(NO₃)₂·6H₂O (0.139 g, 4.67 × 10⁻⁴ mol) were dissolved in a 8.5 mL mixture of DMF–NMP (1:5:1, v/v). The clear dark blue solution was transferred into a 20 mL glass vial and 0.57 mL of EtOH was added. After the vial was tightly capped, it was heated to 90 °C.
at a rate of 1.5 °C min⁻¹ for 60 h in a programmable oven. Cubic-shaped dark blue crystals were separated from the mother liquor contained in the vial and washed with DMF–NMP (1 : 1, v/v) (3 × 5 mL). Elemental microanalysis for the air dried MOF-650, [Zn₄O(2,6-azd)₃]₈⁻(DMF)₈(H₂O)₁₂, calculated (%): C 46.40, H 2.85, N 1.35; found C 45.57, H 3.82, N 2.53. FT-IR (KBr, 4000–464 cm⁻¹): 3420 (s, br), 2929 (m, br), 1660 (vs), 1612 (s), 1575 (w), 1489 (w), 1410 (vs), 1360 (w), 1256 (w), 1199 (w), 1100 (w), 925 (w), 790 (s), 660 (w), 584 (w).

To obtain guest-free materials, the DMF–NMP washed crystals were soaked in 10 mL of CHCl₃ for 3 days with fresh CHCl₃ added every 24 h. The CHCl₃ exchanged material was activated at 50 °C for 12 h under dynamic vacuum.

2.5 Gas sorption measurements

Low-pressure N₂ and H₂ adsorption measurements were performed on an Autosorb-1 (Quantachrome)⁵⁶ and a Micromeritics ASAP 2020 volumetric gas adsorption analyser, respectively. The samples were outgassed to 10⁻⁶ Torr. Helium was used for the estimation of the dead volume, assuming that it was not adsorbed at any of the studied temperatures. Liquid N₂ and liquid Ar baths were used for adsorption measurements at 77 and 87 K, respectively. Ultra-high-purity grade N₂, H₂, and He (99.999% purity) were used throughout the adsorption experiments.

Table 1Crystallographic data and structural refinement summary for MOF-649 and MOF-650⁶⁹

| MOF | CCDC | Empirical formula | Formula weight (g mol⁻¹) | Wavelength (Å) | Temperature (K) | Crystal system | Space group | a (Å) | b (Å) | c (Å) | Volume (Å³) | Z | Density (calcd) (mg m⁻³) | Abs. coefficient (mm⁻¹) | F(000) | Crystal size (mm²) | θ range (°) | Reflections collected | Reflections unique | Completeness to θ (%) | Absorption correction | Max/min transmission | Data/restraints/parameters | Goodness-of-fit on F² | Final R₁ and wR₂ indices [I > 2σ(I)] | R₁ and wR₂ indices (all data) | Notes |
|-----|------|------------------|--------------------------|----------------|----------------|----------------|-------------|----------|-------|-------|-----------|---|-----------------------|------------------------|--------|---------------------|----------------|--------------------------|---------------------|---------------------|---------------------|------------------------|---------------------|---------------------|-------------------|
| MOF-649 | 922544 | C₃₁H₁₁NO₄Zn, 2(C₃H₇NO), H₂O | 499.83 | 0.71073 | 153(2) | Orthorhombic | Cm̅m | 16.052(5) | 21.172(5) | 9.625(5) | 3271(2) | 4 | 1.015 | 0.783 | 1044 | 0.33 × 0.11 × 0.04 | 2.5 to 25 | 12.129 | 1650 | 99.8 | Analytical | 0.944/0.701 | 1345/2173 | 1.096 | 0.0719, 0.2138 | 0.0823, 0.2173 | Data based on the PLATON/SQUEEZE¹⁷ model. |
| MOF-650 | 922543 | 8(C₃H₇NO₄Zn)₄, 4(C₃H₇NO), 4(C₃H₇NO), 13(H₂O) | 8282.98 | 0.71073 | 183(2) | Cubic | Fm3m | 30.5557(17) | 30.5557(17) | 30.5557(17) | 28 528(3) | 1 | 0.482 | 0.686 | 4170 | 0.18 × 0.17 × 0.10 | 2.9 to 25.3 | 13 859 | 1353 | 99.9 | Analytical | 0.481/0.326 | 744/39/37 | 1.123 | 0.1443, 0.3390 | 0.2244, 0.3752 | |

3. Computational details

All DFT calculations were performed with the Quickstep module⁶⁰ of the CP2K program package.¹⁹ The exchange-correlation energy was treated with the revised PBE functional⁶⁰ and van der Waals contributions were accounted for using the Grimme D3 formalism.²¹ Double-zeta valence polarized basis sets of the MOLPPT type²² and Goedecker–Teter–Pseudopotentials²³ were used for all elements. The electronic density was expanded in plane waves up to a cut-off energy of 500 Ry.

MOFs were modelled as infinite cubic crystals based on a supercell containing eight Zn₄O(CO₂)₆ clusters. The cell size of MOF-650 was fixed at the minimum-energy value of a₀ = 31.0 Å (1.45% larger than the experimental structure) and that of IRMOF-8 at a₀ = 30.5 Å. Hydrogen molecules were adsorbed at the various binding sites and the structure was fully relaxed in order to calculate the adsorption energies.

It is to be noted that van der Waals interactions contribute significantly to the adsorption energies and they are treated in an approximate way with the DFT-D3 approach by Grimme et al.²¹ This substantially improves adsorption energies compared to a DFT-only treatment.²⁴ The calculations are carried out at zero Kelvin and for a single adsorbed H₂ molecule at a specific site, which neglects any finite-temperature effects and effects of adsorption at multiple or varying sites.
4. Results and discussion

4.1 Structural analysis of MOF-649 and MOF-650

[Zn₂(2,6-azd)₂(dabco)] (MOF-649). SXRD analysis reveals that MOF-649 crystallizes in the Cmmm space group with $a = 16.052$ Å, $b = 21.172$ Å and $c = 9.625$ Å (Table 1). The framework of MOF-649 is composed of paddle-wheel dinuclear Zn₂ units (Fig. 1b), which are bridged by the 2,6-azd dianion to form a 2D rhombic layer structure and further pillared by dabco to lead to an overall 3D structure with primitive cubic (pcu) topology. The carbon atoms of both dabco and the azulene linker of MOF-649 are disordered. MOF-649 possesses channels whose diameter is approximately 15.7×9.0 Å along the crystallographic c axis (Fig. 1c). If the occluded solvents are removed, a large total solvent accessible void of 68% is estimated.

[Zn₄O(2,6-azd)₃] (MOF-650). MOF-650 crystallizes in a cubic space group with the cell parameter $a = 30.5557$ (Table 1). SXRD analysis reveals that MOF-650 has a 3D framework constructed from the linkage of Zn₄O(CO₂)₆ SBUs and the linear ditopic 2,6-azd linker (Fig. 1d). The carbon atoms of the azulene linker of MOF-650 are disordered. The overall connectivity of the framework is similar to the MOF-5 cubic structure. MOF-650 has two types of cavities having approximate diameters of 15 and 18.0 Å and has a large calculated void volume of 86%.

4.2 Structural features of MOF-650 from simulations

Due to the asymmetrical structural feature (Fig. 1a, right) it is expected that the 2,6-azd linker may connect around the SBUs of MOF-650 either via the carboxylate units of the 5- or the 7-membered ring (Fig. 2 and S1–S3, ESI†). This generates a maximum of four different types of α or β sites in the...
The N\textsubscript{2} isotherm of the activated MOF-649 obtained, a 4.3 Permanent porosity of MOF-649 and MOF-650 ring end of the linker.

depending on the proximity of a 5-membered or 7-membered edges of the 7-membered (de ned as \(\alpha_2/\beta_1\)) ring ends of azulene or vice versa (\(\alpha_4/\beta_4\)). To incorporate these sites (Fig. 2 and S1–S3, ESI†) into the MOF-650 framework, we generated two modelled structures in \(\text{P}m\text{a}3\) [containing \(\alpha_2/\beta_2, \alpha_3/\beta_3\) (Fig. S1, top, ESI†) and \(\alpha_2/\beta_1, \alpha_3/\beta_1\) (Fig. S1, down, ESI†) sites, respectively] and one in \(\text{F}4\text{bm}\) [containing both \(\alpha_2/\beta_3\) and \(\alpha_3/\beta_2\) sites (Fig. S2, ESI†)]. The latter considers an antiparallel arrangement of the linkers with respect to the opposite edge of the square faces of both the cavities. The electrostatic potential around \(\alpha_1, \alpha_2, \beta_1, \beta_2\) and \(\alpha_3, \alpha_4, \beta_3, \beta_4\) sites is depicted in Fig. 2 and S3 (ESI†), respectively. Note the different shape of the potential isosurface depending on the proximity of a 5-membered or 7-membered ring end of the linker.

4.3 Permanent porosity of MOF-649 and MOF-650

The \(\text{N}_2\) isotherm of the activated MOF-649 obtained, after degassing the CHCl\textsubscript{3} exchanged sample at room temperature, did not show any significant uptake (Fig. S4, ESI†). Therefore, efforts were made to activate MOF-649 via supercritical \(\text{CO}_2\) drying (SCD) followed by evacuation at 80 °C.26 The profile of the \(\text{N}_2\) isotherm for the activated MOF-649 can be classi ed as a typical Type I isotherm (Fig. 4a), leading to the presence of permanent microporosity. The Langmuir/BET surface areas and the pore volume of MOF-649 were estimated to be 990/910 m2 g-1 and 0.35 cm3 g-1, respectively. These values are larger than those reported for the isostructural framework of DUT-8(Zn).19g However, the accessible surface area was still found to lie far below when compared with other pillared MOF analogs.19a,43 In order to find the reasons why the lowered \(\text{N}_2\) uptake capacity was observed, the PXRD pattern of MOF-649 after SCD was recorded. As demonstrated in Fig. 3a, in conjunction to the peak broadening the new and relatively low intensity peak at \(2\theta = 7.3^\circ\), which appears following SCD activation, becomes more intense upon heating at 80 °C, whereas simultaneously the intensity of the peak around \(2\theta = 6.7^\circ\) (for (110) reflection) decreases. This implies that the removal of guest molecules causes some structural changes or formation of new phases as shown in an isostructural framework material of DUT-8(Zn).19g

The as-prepared MOF-650 was washed with DME and chloroform, and then occluded solvent molecules were removed under reduced pressure at 50 °C. The peak position of the PXRD pattern of activated MOF-650 was nearly identical to the simulated one (Fig. 3b), which is indicative of the successful activation of the material. To prove the presence of permanent porosity, the \(\text{N}_2\) sorption isotherm was recorded at 77 K, where a Langmuir/BET surface area of activated MOF-650 was estimated to be 3230/2630 m2 g-1 (Fig. 4a). The pore volume of MOF-650 is 1.18 cm3 g-1, measured from the \(\text{N}_2\) uptake at \(P/P_0 = 0.95\).

4.4 Low pressure H\textsubscript{2} adsorption measurements

Low pressure hydrogen isotherms were recorded for activated MOF-649 and -650 at 77 and 87 K (Fig. 4b). As expected, MOF-649 displayed a Type I isotherm without a hysteresis loop, and no saturation uptake was observed under these experimental conditions. The \(\text{H}_2\) uptake in MOF-649 was 7.0 mg g-1 at 1 bar and 77 K (Fig. 4b). The \(\text{H}_2\) uptake in MOF-650 outperforms MOF-649; MOF-650 demonstrated a \(\text{H}_2\) uptake of 14.8 mg g-1 at 77 K and 1 bar (Fig. 4b). From the fit of \(\text{H}_2\) isotherms at 77 and 87 K, the coverage dependencies of the isosteric heats of adsorption (\(Q_{st}\)) for MOF-649 and MOF-650 were estimated. The initial \(Q_{st}\) values of MOF-649 and MOF-650 were 5.3 kJ mol-1 and 6.8 kJ mol-1, respectively. The observed \(Q_{st}\) of MOF-649 is in line with the value reported for isoreticular pillared MOFs suggesting a minor effect of azulene to improve the polarization potential required for the stabilization of \(\text{H}_2\).27 On the other hand, the initial \(Q_{st}\) value for MOF-650 is superior when compared to the values obtained for representative MOF-5 (3.8–4.8 kJ mol-1) and other MOFs having a pcu topology and \(\text{Zn}_4\text{O(CO}_2\text{)}_6\) SBUs.28–30

4.5 Calculation of site-specific hydrogen adsorption energies in MOF-650 and IRMOF-8

For a better understanding of the adsorption properties and to investigate the reason for the observed higher \(Q_{st}\) of MOF-650, we performed DFT-based calculations to model the \(\text{H}_2\)

![Fig. 4](https://example.com/fig4.png)

Fig. 4 \(\text{N}_2\) (a) and \(\text{H}_2\) (b) isotherms of the activated MOFs. Filled and open circles represent adsorption and desorption branches, respectively. Connecting traces are provided for better visualization of the sorption processes. (c) The coverage dependencies of adsorption enthalpies of \(\text{H}_2\) in activated MOFs.
adsorption. In particular, we considered the geometry and the energetics of the H2 molecule when adsorbed at different primary binding sites within the framework of MOF-650 and IRMOF-8. These adsorption sites (Fig. 5) were selected on the basis of previous studies performed for related systems, which demonstrate preferred H2 adsorption in the vicinity of the (CO2)3 structural unit and sites above the (ZnO)3 face of a ZnO4 tetrahedron.11,12,31 Specifically, we selected four different sites in MOF-650 that were close to the (CO2)3 unit, i.e. \(\alpha_1-\alpha_4 \) and (ZnO)3 units, i.e. \(\beta_1-\beta_4 \) (see Section 4.2, Fig. 2, and ESI for details†). In IRMOF-8 all \(\alpha \) and \(\beta \) sites are respectively equivalent. In order to also take into account the adsorption at the linker itself, i.e. the \(\delta \) site, we investigated two additional sites. The site closest to the 7-membered rings of azulene is labelled \(\delta(C_7) \) and the one closest to the 5-member ring is labelled \(\delta(C_5) \) (Fig. 5). In IRMOF-8, these sites are again equivalent, i.e. \(\delta(C_6) \).30

Table 2 summarizes all the calculated adsorption energies for H2 at the different sites for MOF-650 and IRMOF-8. At each site two conformations were considered for H2: “parallel” (i.e. side-on interaction of H2 with the plane of the adsorption site) and “perpendicular” (i.e. end-on interaction of H2 with the plane of the adsorption site). The data clearly reveal that the most favourable adsorption occurs at the \(\alpha \) sites followed by the \(\beta \) sites of MOF-650. The adsorption energies on the azulene linker (\(\delta \) sites) are roughly 8 kJ mol\(^{-1}\) and 1–2 kJ mol\(^{-1}\) weaker in comparison to those at the \(\alpha \) and \(\beta \) sites, respectively. The 5-membered ring, i.e. the \(\delta(C_5) \) site, of MOF-650 binds H2 more strongly than the 7-membered ring, i.e. the \(\delta(C_7) \) site. This is in line with previously reported calculations conducted on unsubstituted azulene.8 Notably, the adsorption energies in the vicinity of the (CO2)3 unit in MOF-650 are larger in comparison with those of IRMOF-8. This is especially true when considering the adsorption of the H2 molecule in parallel configuration, in which the energies are demonstrated as superior – irrespective of the orientation of the adjacent azulene linkers. For the site \(\delta(C_7) \) of MOF-650 the adsorption energy is slightly larger than at the delta (\(\delta \)) site of IRMOF-8 when considering a perpendicular configuration of the adsorbed H2 molecule. On the other hand, the calculated values for the \(\beta \) sites of MOF-650 are found to be a little lower than for IRMOF-8, in particular when the hydrogen molecule is adsorbed in parallel orientation (except at site \(\beta_3 \)). H2 mostly prefers a parallel orientation at \(\alpha \) sites, and a perpendicular orientation at \(\beta \) sites, in both MOF-650 and IRMOF-8. Indeed, the calculated energy data clearly

<table>
<thead>
<tr>
<th>Site</th>
<th>MOF-650 (perpendicular)</th>
<th>MOF-650 (parallel)</th>
<th>IRMOF-8 (perpendicular/parallel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_1)</td>
<td>-10.46</td>
<td>-13.44</td>
<td>-12.14</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>-9.89</td>
<td>-12.72</td>
<td>-11.98</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>-a</td>
<td>-13.71</td>
<td>-13.72</td>
</tr>
<tr>
<td>(\alpha_4)</td>
<td>-a</td>
<td>-13.76</td>
<td>-13.72</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>-7.22</td>
<td>-5.89</td>
<td>-7.34/7.54</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>-7.27</td>
<td>-6.76</td>
<td>-7.06/7.34</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>-a</td>
<td>-7.95</td>
<td>-7.95/7.34</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>-7.27</td>
<td>-7.06</td>
<td>-7.27/7.43</td>
</tr>
<tr>
<td>(\delta(C_7))</td>
<td>-5.20</td>
<td>-4.61</td>
<td>-4.61/4.81</td>
</tr>
<tr>
<td>(\delta(C_5))</td>
<td>-6.01</td>
<td>-5.29</td>
<td>-5.29/4.81</td>
</tr>
<tr>
<td>(\delta(C_6))</td>
<td>-1/1</td>
<td>-4.75/4.81</td>
<td>-4.75/4.81</td>
</tr>
</tbody>
</table>

\(\dagger \) In these cases only the “parallel” configuration of H2 was found to be stable after the structure was relaxed.
demonstrate that the incorporation of the azulene linker and its polarity influence the adsorption energies in a positive manner with the exception of some of the β sites. Thus, it is likely that the observed high \(Q_a \) at zero coverage can be attributed to the \(\text{H}_2 \) adsorption at the α sites preferentially with a side-on (parallel) orientation.

5. Conclusions

A strategy has been pursued to improve the binding energy of hydrogen in metal–organic frameworks (MOFs) by incorporation of the internally polarized azulene system in comparison with the isomeric naphthalene system, thus creating polar pore walls. Two novel MOFs composed of internally polarized 2,6-azulenedicarboxylate \([2,6\text{-azd}] \) and \([2,6\text{-azd}]_2 \), termed MOF-649 \([\text{Zn}_2(2,6\text{-azd})] \) and MOF-650 \([\text{Zn}_2(2,6\text{-azd})_2] \), could be prepared. Both materials displayed permanent microporosity (Brunauer–Emmett–Teller surface areas of MOF-649 and MOF-650 were estimated to be 910 and 2630 m\(^2\) g\(^{-1}\), respectively). The \(\text{H}_2 \) adsorption measurements revealed that MOF-650 adsorbs 14.8 mg g\(^{-1}\) of hydrogen at 77 K and 1 bar. The polarization effect of the azulene unit in the framework is supported for MOF-650 by a high initial isosteric heat of adsorption of 6.8 kJ mol\(^{-1}\). A detailed DFT analysis on MOF-650 helped to understand the site-specific interactions with hydrogen occurring preferably in sites around the \(\text{Zn}_2\text{O}(\text{CO}_2)_6 \) units in the energy range of 13 to 14 kJ mol\(^{-1}\).

Acknowledgements

Funding from the Swiss National Science Foundation (SNSF), University of Zurich and U.S. Department of Energy, BASF SE (Ludwigshafen, Germany) as well as generous computing resources from the University of Zurich are gratefully acknowledged. We thank Kyle Cordova (UC Berkeley) for his valuable comments.

Notes and references

