Combining Linker Design and Linker-Exchange Strategies for the Synthesis of a Stable Large-Pore Zr-Based Metal–Organic Framework

Hue T. T. Nguyen, †, § Thach N. Tu, †, ‡ My V. Nguyen, †, ‡ Tien H. N. Lo, †, ‡, || Hiroyasu Furukawa, ‡, ¶ Ngoc N. Nguyen, †, ‡, †† and My D. Nguyen †

‡ Center for Innovative Materials and Architectures (INOMAR) and † † University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM), Ho Chi Minh City 721337, Vietnam
§ Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 755414, Vietnam

Abstract: A Zr(IV)-based metal–organic framework (MOF), termed reo-MOF-1 [Zr6O8(H2O)8(SNDC)4], composed of 4-sulfonaphthalene-2,6-dicarboxylate (HSNDC2−) linkers and Zr6O8(H2O)8(CO2)8 clusters was synthesized by solvothermal synthesis. Structural analysis revealed that reo-MOF-1 adopts the reo topology highlighted with large cuboctahedral cages (23 Å). This structure is similar to that found in DUT-52 (fcu topology), however, reo-MOF-1 lacks the body-centered packing of the 12-connected Zr6O8(OH)4(CO2)12 clusters, which is attributed to the subtle, but crucial influence in the bulkiness of functional groups on the linkers. The control experiments, where the ratio of H3SNDC/naphthalene-2,6-dicarboxylate linkers was varied, also support our finding that the bulky functionalities play a key role for defect-controlled synthesis. The reo-MOF-1A framework was obtained by linker exchange to yield a chemically and thermally stable material despite its large pores. Remarkably, reo-MOF-1A exhibits permanent porosity (Brunauer–Emmett–Teller and Langmuir surface areas of 2104 and 2203 m² g⁻¹, respectively). Owing to these remarkable structural features, reo-MOF-1A significantly enhances the yield in Brønsted acid-catalyzed reactions.

Keywords: MOF, defect, Brønsted acid catalyst, reo topology

1. INTRODUCTION

Metal–organic frameworks (MOFs) are a new generation of porous extended materials assembled by inorganic and organic building units. Judicious selection of these building units leads to various crystalline architectures with tunable pore sizes and shapes. Internal chemical environments can also be modified by introducing functionalized building units into the framework. Due to such amenability in the design and synthesis of MOF structures, significant efforts have been devoted for employing MOFs in a wide range of applications, including but not limited to gas storage/separation, proton conduction, catalysis, and drug delivery. Among the tens of thousands of MOFs that have been synthesized to date, Zr-based MOFs have received considerable attention due to their remarkable chemical stability and mechanical strength, which are important properties for the use of MOFs in practical applications. However, most Zr-based MOFs synthesized with simple organic linkers have relatively small pores, which restricts the use of Zr-based MOFs in catalysis.

A popular technique to overcome this limitation is defect-controlled synthesis, as the presence of random defect sites distributed throughout the framework results in hierarchical pore architectures consisting of micro- and meso-/macropores. Further, deliberate incorporation of defect sites into MOFs often leads to emerging properties that cannot be replicated in the “defect-free” MOFs, including enhanced porosity and gas uptake properties, proton conductivity, and catalytic activity, as well as the removal of toxic contaminants (e.g., organic vapors and metal ions). Several strategies have been proposed for defect-controlled synthesis, including modulating the crystallization rate during MOF formation, addition of modulators (typically monocarboxylic acids) and linker thermolysis. Specifically designed organic linkers are also utilized to introduce higher porosity in these frameworks in a controlled manner. The essence of this approach is that bulky functionalities of the linker can induce the formation of inorganic clusters with a lower coordination number (e.g.,...
12-coordinated Zr$_6$O$_4$(OH)$_4$(CO$_2$)$_{12}$ vs 8-coordinated Zr$_6$O$_8$(H$_2$O)$_8$(CO$_2$)$_8$. Consequently, the probability of generating defect sites increases as there are fewer connections between inorganic clusters.\(^{24,41,42}\)

To overcome these challenges, we propose a two-step synthesis of a Zr-based MOF that possesses a chemically and mechanically stable framework with enlarged pores by combining linker design (i.e., addition of bulky functional groups) and postsynthetic linker-exchange strategies. More specifically, this approach was implemented by assembling 4-sulfonaphthalene-2,6-dicarboxylate (HSNDC)\(^{-}\) as the linker with Zr$_6$O$_8$(H$_2$O)$_8$(CO$_2$)$_8$ inorganic clusters. The presence of the sulfonate moieties tethered to the ditopic linkers leads to a framework with enlarged pores, termed reo-MOF-1. Structural analysis revealed that the topology of reo-MOF-1 is found to be based on the \textit{reo} net, which is reminiscent of the \textit{fcu} net with the missing metal cluster "defect."\(^{41,42}\) The resulting powder sample was further treated with naphthalene-2,6-dicarboxylate (NDC)\(^{-}\) to obtain the open-pore material, namely, reo-MOF-1A. As expected, the linker-exchanged material exhibits permanent porosity (Brunauer–Emmett–Teller (BET) SA = 2104 m\(^2\) g\(^{-1}\)). Furthermore, owing to the presence of large cages (23 Å) decorated with sulfonic acid moieties (residual HSNDC\(^{-}\) after the linker exchange), reo-MOF-1A exhibits higher catalytic activity than that of reo-MOF-1, DUT-52, UiO-66, UiO-67, MOF-808, and NU-1000 for Brunsted acid catalytic reactions.\(^{45–48}\)

2. EXPERIMENTAL SECTION

2.1. Chemicals. N,N-Dimethylformamide (DMF), formic acid (purity >98%), dichloromethane, and anhydrous methanol were obtained from EMD Millipore Chemicals. Zirconium oxychloride octahydrate (ZrOCl$_2$·8H$_2$O, purity ≥99.5%) and naphthalene-2,6-dicarboxylic acid (H$_2$NDC, ≥95%) were obtained from Sigma-Aldrich. Oleum was obtained from a local commercial vendor. All starting materials and solvents were used without further purification. H$_4$SNDC was synthesized according to the published procedure.\(^{49}\)

2.2. Synthesis of reo-MOF-1. A mixture of ZrOCl$_2$·8H$_2$O (0.056 g, 0.17 mmol) and H$_4$SNDC (0.048 g, 0.16 mmol) was dissolved in 8 mL of DMF. Subsequently, formic acid (2 mL) was added into the solution. The reaction mixture was heated at 120 °C in an isothermal oven for 24 h, then cooled to room temperature. The resulting crystalline powder was collected by centrifugation, washed with DMF (10 mL) and methanol (10 mL) for 3 days, respectively, during which DMF and methanol were recycled and replenished three times per day. The product was evacuated under vacuum (10\(^{-3}\) Torr) at room temperature to yield the white guest-free solid (80% yield, based on Zr\(^{4+}\)). Elemental analysis (EA) of activated sample: calcd for Zr$_6$C$_{53.4}$H$_{77.4}$O$_{56.5}$N$_{2.2}$S$_{4}$ = [Zr$_6$O$_7$(OH)(H$_2$O)$_6$(SNDC)$_{2.2}$]$_{12}$−(HSNDC)$_{1.8}$(HCO$_2$)$_3$·2.2(C$_2$H$_8$N)$_2$·12.5(H$_2$O): C, 27.52; H, 3.32; N, 1.32, and S, 5.50%. Found: C, 27.99; H, 3.19; N, 1.49, and S, 5.13%. Fourier transform infrared (attenuated total reflectance) (FT-IR (ATR)): 1654 (s); 1605 (m); 1561 (s); 1494 (w); 1414 (s); 1354 (s); 1190 (s); 1172 (s); 1046 (s); 998 (m); 925 (m); 842 (w); 788 (s); 765 (s); 722 (w); 650 (w); and 619 (s) (Figure S9).

2.3. Synthesis of Linker-Exchanged reo-MOF-1 (reo-MOF-1A). H$_4$NDC (500 mg) was dissolved in 3 mL of KOH solution (4% in H$_2$O), in which 1 M HCl was added to adjust the pH to 4. The powder material of reo-MOF-1 (50 mg) was added to the solution containing the linker and stirred at room temperature for 30 min. The linker-exchanged MOF powder was centrifuged and washed with water (10 mL) for 24 h, during which the water was replaced and replenished five times to remove unreacted K$_4$NDC. After washing the MOF powder sample was immersed in an acidified MeOH/H$_2$O (≈ 8:2, v/v; pH was adjusted to 1 with 1 M HCl) solution for 24 h and washed with MeOH/H$_2$O (≈ 8:2, v/v) until the pH of the decanted liquor reached to 4. The recovered MOF powder was further washed with DMF (3 × 5 mL, 24 h), MeOH (5 × 5 mL, 24 h), CH$_3$Cl$_3$ (5 × 5 mL, 24 h), successively, and dried under dynamic vacuum (10\(^{-3}\) Torr) at room temperature to yield the desolvated reo-MOF-1A material. EA of activated sample: calc for Zr$_6$C$_{68.92}$H$_{93.18}$O$_{39.13}$N$_{0.62}$S$_{2.2}$. Elemental analysis (EA) of activated sample: calcd for Zr$_6$C$_{68.92}$H$_{93.18}$O$_{39.13}$N$_{0.62}$S$_{2.2}$ (NDC)$_{4.38}$−(HSNDC)$_{0.62}$·3.27(H$_2$O): C, 36.52; H, 2.48; N, 0; and S, 1.00%. Found: C, 36.71; H, 2.49; N, 0.07; and S, 1.54%. FT-IR (ATR–IR): 1695 (s); 1645 (w); 1540 (s); and 1414 (s); 1356 (s); 1172 (s); 1046 (s); 998 (m); 925 (m); 842 (w); 788 (s); 765 (s); 722 (w); 650 (w); and 619 (s) (Figure S9).

3. RESULTS AND DISCUSSION

3.1. Synthesis, Structural Determination, and Characterization of reo-MOF-1. A microcrystalline powder of...
reo-MOF-1 was solvothermally synthesized from H$_3$SNDC linker and ZrOCl$_2$·8H$_2$O in DMF with the presence of formic acid as a modulator (Figure 1). Powder X-ray diffraction (PXRD) pattern of the as-synthesized sample exhibits four intense diffraction peaks at 2θ = 3.75, 5.29, 6.48, and 7.48$^\circ$, whose profile is different from the calculated PXRD pattern of DUT-52 [Zr$_6$O$_4$(OH)$_4$(NDC)$_6$] (Figures 2 and S3).

Figure 2. Experimental (purple) and refined (blue) PXRD patterns of as-synthesized reo-MOF-1 after Rietveld refinement. The difference plot (red) and Bragg positions (green) are also provided. Full range Rietveld refinement data (2θ = 2–80$^\circ$) are shown in the Supporting Information (Section S4).

To investigate whether the reo-MOF-1 structure is formed by the introduction of defect sites into the DUT-52 framework (face-centered cubic, Fm3m, fcc topology), MOF samples containing two linkers (i.e., HSNDCC$^{-2}$ and NDC$^{2-}$) with variable ratios were prepared (Section S3). The PXRD patterns of these materials revealed that the relative intensity of two low angle peaks (2θ = 3.75 and 5.29$^\circ$) increases with a larger amount of H$_3$SNDC added to the reaction mixture, whereas the unit cell length of a series of mixed-linker MOFs is nearly identical to that found in DUT-52 (Figures S4 and S5). Furthermore, given the position of two extra diffraction peaks at low angle, the Bravais lattice of defect containing MOFs must be in the primitive cubic system (P2$_3$, Pm3m, P432, P431m, or Pm3m). This finding indicates that the introduction of the defect sites (i.e., missing clusters) lowers the symmetry of mixed-linker MOF samples.

To elucidate the atomistic connectivity of reo-MOF-1, powder pattern indexing, followed by profile fitting, was performed using Materials Studio Version 7.0 software. Analysis of the diffraction data from the as-synthesized reo-MOF-1 material indicates that the framework crystallizes in the cubic space group Pm3m (No. 200), with a unit cell length of 23.6938 Å. This implies that Zr clusters in reo-MOF-1 are bridged by SNDC$^{3-}$/HSNDCC$^{2-}$ linkers as observed in DUT-52, whereas 12-connected Zr$_6$O$_4$(OH)$_4$(CO$_2$)$_{12}$ clusters at the body-centered position in DUT-52 are not present in the reo-MOF-1 framework since we observe reflections that would be forbidden in a body-centered unit cell. With this modeled structure, the full range Rietveld refinement was performed to optimize the atom position in the lattice, with the structure being successfully refined with low R-values (2θ = 2–80$^\circ$, R_p = 4.13%, and R_{wp} = 6.4%, Figures 2 and S7, Section S4).

The refined structure clearly reveals that reo-MOF-1 consists of eight-connected Zr$_6$O$_4$(H$_2$O)$_4$(CO$_2$)$_8$ clusters, which are linked by SNDC$^{3-}$/HSNDCC$^{2-}$ linkers (Figure 1a,b) to realize the reo net (Figure S8) with eight corner-shared octahedral cages (9 Å) around the central cuboctahedral cage (23 Å) (Figure S8). These two types of cage are cross-linked through a triangular window with an aperture diameter of approximately 5 Å. It should be noted that although several Zr-based MOFs with the reo net have been reported (DUT-51, DUT-67, and UiO-66 containing missing cluster defects), these MOFs are synthesized by making use of either bent linkers or modulators. In contrast, the generation of defects in reo-MOF-1 is attributed to the subtle difference in the bulkiness of functionalities (i.e., DUT-52 vs reo-MOF-1, Figure S8). Considering the coordination number of Zr-based clusters that can be readily manipulated by introducing bulky functionalities, this approach is valuable as a means of manipulating framework connectivity, especially, for MOFs composed of high coordination number inorganic units.

To investigate the architectural stability of reo-MOF-1, the as-synthesized material was washed with DMF and MeOH, followed by evacuation under dynamic vacuum at room temperature. FT-IR spectroscopy of desolvated reo-MOF-1 demonstrates that the atomistic connectivity of reo-MOF-1 is unchanged, as observed by the presence of coordinated carboxylate with the characteristic sharp signals indicative of carboxylate groups (C=O), appearing at 1649 and 1600 cm$^{-1}$ (multiplets are caused by the asymmetry of the SNDC$^{3-}$ linker). The presence of sulfonate moieties was also confirmed by the broad peak at 1180 cm$^{-1}$ (Figures 3a and S9). However, PXRD analysis indicates that the crystallinity of the desolvated materials is lower than that of as-synthesized materials, which is indicative of the loss of long range periodicity in the materials (Figure 3b). Considering that a similar trend was observed in MOFs possessing sulfonate functionalities, the removal of methanol from the cage without sacrificing the crystallinity may be hampered by the strong interaction between the sulfonate groups and methanol. This is also in line with the N$_2$ adsorption analysis; the BET surface area of the desolvated material was estimated to be 34 m2 g$^{-1}$, which is significantly lower than the theoretically predicted value (Materials Studio Version 7.0; Langmuir SA = 1733 m2 g$^{-1}$).

3.2. Synthesis and Characterization of reo-MOF-1. Assuming that the sulfonate functionalities can prevent successful sample activation, a linker-exchange reaction of reo-MOF-1 with pristine NDC$^{2-}$ linkers may solve the sample activation challenge. To this end, reo-MOF-1 was subjected to linker exchange with dipotassium naphthalene-2,6-dicarboxylate (K$_2$NDC), where the potassium salt was used to facilitate the linker-exchange rate (Figure 1c,d). After performing the linker-exchange procedure for 30 min, the resulting MOF powder was washed and dried (see Experimental Section).

PXRD and spectroscopic analyses of the activated reo-MOF-1A sample were performed to evaluate whether SNDC$^{3-}$-linkers in reo-MOF-1 are replaced with NDC$^{2-}$ without loss in framework crystallinity. The PXRD pattern (Figure 3b) indicates that the linker-exchanged sample remains highly crystalline, which is in sharp contrast to the diffraction pattern of reo-MOF-1. Successful linker exchange is also confirmed by the FT-IR spectra; two unique peaks centered at 1180 and 1649 cm$^{-1}$, which were assigned to the sulfonate and carboxylate stretching modes of the HSNDCC$^{2-}$/SNDC$^{3-}$ linker, respectively (Figure 3a), were absent in the FT-IR spectrum of reo-MOF-1A. To determine the ratio of HSNDCC$^{2-}$ (acidified at pH = 1) and NDC$^{2-}$ in reo-MOF-1A quantitatively, 1H NMR spectrum of acid-digested samples...
was recorded. From the integration of HD (H atom at C1 position of HSNDC2−), the HSNDC2−/NDC2− ratio is estimated to be 0.14 (Figure S15). With EA data, a plausible chemical formula of reo-MOF-1A can be determined as [Zr6O8(H2O)6(NDC)4.38(HSNDC)0.62]·3.27(H2O).54 The thermal stability and the permanent porosity of reo-MOF-1A were examined by thermogravimetric analysis (TGA) and 77 K N2 adsorption measurements. TGA indicates that reo-MOF-1A is stable up to 450 °C with less than 2.2% weight loss up to 200 °C (Figure S11). N2 isotherm of reo-MOF-1A shows reversible uptake (Figure 3c) with a high BET (Langmuir) surface area of 2104 m2 g−1 (2203 m2 g−1). These values are in line with the theoretically predicted surface area (Materials Studio 7.0; Langmuir SA = 2083 m2 g−1) and are higher than those of reo-MOF-1 (42 m2 g−1, structural collapse), pristine UiO-66 (1187 m2 g−1),46 UiO-66 with missing linker defects (1617 m2 g−1),22 UiO-66 missing cluster defects (1777 m2 g−1),24 and DUT-52 (1399 m2 g−1).45

Furthermore, pore size distribution analysis confirmed the pore diameters in reo-MOF-1A (Figure S29).

3.3. Catalytic Activity. Recently, the design and synthesis of new Zr-based MOFs with large pore sizes and strong Brønsted acid catalytic activity have received much attention.47,55−57 As we demonstrated, reo-MOF-1A exhibits a high surface area, and more importantly the pores of reo-MOF-1A are decorated with residual sulfonic acid groups. This led us to evaluate the Brønsted acid catalytic activity of reo-MOF-1A in comparison to representative Zr-based MOFs. For this purpose, we chose the formation of 2-phenylbenzoxazole by the condensation reaction between benzaldehyde and 2-aminophenol because of its emissive properties and pharmaceutical interests.58,59 The catalytic activity of reo-MOF-1A was evaluated according to a published procedure with a slight modification.55 After combining benzaldehyde and 2-aminophenol in the presence of reo-MOF-1A, the color of the reaction mixture gradually turned from black purple to red brown, which is indicative of the successful formation of 2-phenylbenzoxazole. Gas chromatography (GC) analysis revealed that 2-phenylbenzoxazole was formed with 92% isolated yield in the presence of 1 mol % reo-MOF-1A catalyst after 6 h. To exclude the possibility that the condensation reaction is catalyzed by the acidic linker molecules leached out from reo-MOF-1A, we performed control experiments. As expected, no 2-phenylbenzoxazole formation was observed after the isolation of reo-MOF-1A from the reaction mixture (Figure 4), indicating that reo-MOF-1A works as a heterogeneous catalyst.

The durability of reo-MOF-1A as a catalyst was further evaluated by repeating the catalysis experiments for up to five cycles. Experimental results exhibited that reo-MOF-1A is reused without a significant reduction in catalytic activity. Specifically, up to 92% GC yield was found after the fifth cycle with the recovered reo-MOF-1A powder sample (Figure 4). Moreover, no significant structural degradation of reo-MOF-1A was observed following these consecutive catalytic experiments, based on PXRD and FT-IR measurements (Section S11). To further demonstrate the advantage of reo-MOF-1A as a Brønsted acid catalyst, the catalytic activity was compared...
with reo-MOF-1 (acidified at pH = 1 for 24 h), DUT-S2, UiO-66, UiO-67, MOF-808-P, and NU-1000. As shown in Table 1 and Figure S24, catalytic activity of reo-MOF-1A is significantly higher than those of other Zr-based MOFs. This can be attributed to a combination of effects; faster diffusion of substrates through the larger pores along with acidic functionalities decorating the pore walls accelerates the condensation reaction.

To take this point further, we performed the linker-exchange reaction for varying lengths of time (10 min and 14 h) to modulate the density of acidic functional groups that line the framework interior (Table 2). PXRD patterns of these activated samples confirm that high crystallinity is retained following linker exchange (Figure S27). The BET surface areas of MOF samples exchanged for 10 min and 14 h were calculated to be 1704 and 2218 m2 g$^{-1}$, respectively (Figure S28). Furthermore, the pore size distribution analysis indicates that the pore width for the 14 h exchanged sample is slightly larger than the samples exchanged for a shorter time because of the replacement of a greater amount of bulky functional groups (Figure S29). Indeed, this trend is in line with FT-IR and 1H NMR spectra as the HSNDC$^{2-}$ content decreases with an increase in the linker-exchange time (Figures S30 and S31).

The catalytic investigations of these samples were performed in the same manner. The GC yields of 10 min and 14 h samples were estimated to be 42.0 and 54.4%, respectively, which is significantly lower than reo-MOF-1A (30 min sample, 98.6% of GC yield, Figure S32). The low catalytic activity of the sample treated for 10 min can be attributed to the high concentration of bulky HSNDC$^{2-}$ linker, preventing substrate diffusion. In contrast, it is presumed that the lower density of acidic sites in the sample treated for 14 h leads to limited catalytic activity. These results support our hypothesis that the reo architecture that is decorated with an optimal density of acidic functionalities offers the best of both worlds, allowing the diffusion of substrates while maintaining a significant number of Bronsted acid sites for maximal activity.

4. CONCLUSIONS

In this work, we describe the synthesis and characterization of a new Zr-based MOF, reo-MOF-1, prepared by combining linker design and linker-exchange strategies. The outcome of this study demonstrates that the coordination number of Zr-based clusters can be controlled by employing linkers functionalized with sulfonate moieties whose steric hindrance prevents the formation of a framework with the maximal coordination number of 12; instead, a more open framework offering larger cavities forms, with 8-coordinated inorganic clusters while maintaining the sought-after chemical stability that has made Zr-based MOFs famous. This difference in the coordination number plays a key role in the formation of the reo architecture. The new material, reo-MOF-1, was further treated in an aqueous solution containing K$_2$NDC to replace part of the SNDC$^{2-}$ linkers. After the linker-exchange reaction, the resulting material reo-MOF-1A exhibited permanent porosity with a high BET surface area (2104 m2 g$^{-1}$). The combination of this open-framework structure with the presence of residual sulfonic acid functionalities in the pores leads to superior catalytic performance, exemplified by the condensation reaction to form 2-phenylbenzoxazole using reo-MOF-1A as the catalyst. Indeed, the latter outperformed representative Zr-based MOF materials. We anticipate that our strategy will inspire the design of new porous frameworks, such as reticulately expanded forms of reo-MOF-1 and frameworks with multivariate functionalities, maximizing the performance of this class of materials as Brunsted acid catalysts.

Table 1. Reactions between Aldehyde and 2-Aminophenol Utilizing Different Catalysts

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reo-MOF-1</td>
<td>98.6 ± 0.23 (92%)</td>
</tr>
<tr>
<td>2</td>
<td>acidified reo-MOF-1</td>
<td>59.5 ± 0.37</td>
</tr>
<tr>
<td>3</td>
<td>DUT-S2</td>
<td>53.3 ± 0.38</td>
</tr>
<tr>
<td>4</td>
<td>UiO-67</td>
<td>40.5 ± 0.44</td>
</tr>
<tr>
<td>5</td>
<td>UiO-66</td>
<td>24.6 ± 0.36</td>
</tr>
<tr>
<td>6</td>
<td>MOF-808-P</td>
<td>46.7 ± 0.39</td>
</tr>
<tr>
<td>7</td>
<td>NU-1000</td>
<td>75.3 ± 0.55</td>
</tr>
</tbody>
</table>

aReaction conditions: 1 mol % catalyst, benzaldehyde (0.5 mmol), 2-aminophenol (0.5 mmol), 6 h.

Table 2. Probing the Relationship between Catalytic Activity and the Concentration of Acidic Functionalities

<table>
<thead>
<tr>
<th>linker-exchange time</th>
<th>catalyst</th>
<th>HSNDC$^{2-}$/NDC$^{2-}$</th>
<th>BET surface area (m2 g$^{-1}$)</th>
<th>GC yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>10 min reo-MOF-1A</td>
<td>0.32</td>
<td>1704</td>
<td>41.6 ± 0.31</td>
</tr>
<tr>
<td>30 min</td>
<td>30 min reo-MOF-1A (original sample)</td>
<td>0.14</td>
<td>2104</td>
<td>98.6 ± 0.23</td>
</tr>
<tr>
<td>14 h</td>
<td>14 h reo-MOF-1A</td>
<td>0.07</td>
<td>2218</td>
<td>53.7 ± 0.48</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

We are grateful to Prof. Omar M. Yaghi (UC Berkeley) for the continued support for global science initiatives. This research was supported by the U.S. Office of Naval Research Global: Naval International Cooperative Opportunities in Science and Technology Program (No. N62909-16-1-2146) for the linker synthesis, materials characterization, and catalysis. The authors also acknowledge the financial support from Nguyen Tat Thanh University for the design, synthesis, and structural determination of reo-MOF-1 and reo-MOF-1α. We acknowledged Dr. Christopher A. Trickett for his valuable comments and editorial assistance. We thank Y. B. N. Tran, Huong Nguyen, and Vu D. Tieu at INOMAR for their assistance with this work.

REFERENCES

The authors declare no competing financial interest.

(51) The partial deprotonation of sulfonic acid functionalities are found in reo-MOF-1.

(54) EA shows that the carbon content is higher than expected. This could be because naphthalene-2,6-dicarboxylate is exchanged with the coordinated formate ligands (introduced during the solvothermal synthesis).

