MET-1

Paper: Porous, Conductive Metal-Triazolates and Their Structural Elucidation by the Charge-Flipping Method

Authors: F. Gándara, F. J. Uribe-Romo, D. K. Britt, H. Furukawa, L. Lei, R. Cheng, X. Duan, M. O'Keeffe, and O. M. Yaghi

Citation: Chem. Eur. J., 2012, 18, 10595-10601

DOI: 10.1002/chem.201103433

Abstract: A new family of porous crystals was prepared by combining 1H-1,2,3-triazole and divalent metal ions (Mg, Mn, Fe, Co, Cu, and Zn) to give six isostructural metal-triazolates (termed MET-1 to 6). These materials are prepared as microcrystalline powders, which give intense X-ray diffraction lines. Without previous knowledge of the expected structure, it was possible to apply the newly developed charge-flipping method to solve the complex crystal structure of METs: all the metal ions are octahedrally coordinated to the nitrogen atoms of triazolate such that five metal centers are joined through bridging triazolate ions to form super-tetrahedral units that lie at the vertexes of a diamond-type structure. The variation in the size of metal ions across the series provides for precise control of pore apertures to a fraction of an Angstrom in the range 4.5 to 6.1 Å. MET frameworks have permanent porosity and display surface areas as high as some of the most porous zeolites, with one member of this family, MET-3, exhibiting significant electrical conductivity.